Bicarbonate uptake by Southern Ocean phytoplankton
نویسندگان
چکیده
[1] Marine phytoplankton have the potential to significantly buffer future increases in atmospheric carbon dioxide levels. However, in order for CO2 fertilization to have an effect on carbon sequestration to the deep ocean, the increase in dissolved CO2 must stimulate primary productivity; that is, marine phototrophs must be CO2 limited [Riebesell et al., 1993]. Estimation of the extent of bicarbonate (HCO3 ) uptake in the oceans is therefore required to determine whether the anthropogenic carbon sources will enhance carbon flux to the deep ocean. Using short-term CO2-disequilibrium experiments during the Southern Ocean Iron Experiment (SOFeX), we show that HCO3 uptake by Southern Ocean phytoplankton is significant. Since the majority of dissolved inorganic carbon (DIC) in the ocean is in the form of bicarbonate, the biological pump may therefore be insensitive to anthropogenic CO2. Approximately half of the DIC uptake observed was attributable to direct HCO3 uptake, the other half being direct CO2 uptake mediated either by passive diffusion or active uptake mechanisms. The increase in growth rates and decrease in CO2 concentration associated with the iron fertilization did not trigger any noticeable changes in the mode of DIC acquisition, indicating that under most environmental conditions the carbon concentrating mechanism (CCM) is constitutive. A low-CO2 treatment induced an increase in uptake of CO2, which we attributed to increased extracellular carbonic anhydrase activity, at the expense of direct HCO3 transport across the plasmalemma. Isotopic disequilibrium experimental results are consistent with Southern Ocean carbon stable isotope fractionation data from this and other studies. Although iron fertilization has been shown to significantly enhance phytoplankton growth and may potentially increase carbon flux to the deep ocean, an important source of the inorganic carbon taken up by phytoplankton in this study was HCO3 , whose concentration is negligibly affected by the anthropogenic rise in CO2. We conclude that biological productivity in this region of the world’s ocean is unlikely to be directly regulated by natural or anthropogenic variations in atmospheric CO2 concentrations because of the presence of a constitutive CCM.
منابع مشابه
Uptake of Leucine, Chitin, and Iron by Prokaryotic Groups during Spring Phytoplankton Blooms Induced by Natural Iron Fertilization off Kerguelen Island (Southern Ocean)
Citation: Fourquez M, Beier S, Jongmans E, Hunter R and Obernosterer I (2016) Uptake of Leucine, Chitin, and Iron by Prokaryotic Groups during Spring Phytoplankton Blooms Induced by Natural Iron Fertilization off Kerguelen Island (Southern Ocean). Front. Mar. Sci. 3:256. doi: 10.3389/fmars.2016.00256 Uptake of Leucine, Chitin, and Iron by Prokaryotic Groups during Spring Phytoplankton Blooms In...
متن کاملBicarbonate transport and extracellular carbonic anhydrase activity in Bering Sea phytoplankton assemblages: Results from isotope disequilibrium experiments
We used a 14C isotope disequilibrium technique to provide quantitative estimates of both direct HCO 3 transport and extracellular CA activity in Bering Sea phytoplankton assemblages. The method revealed that direct HCO 3 transport was the dominant mechanism of inorganic C uptake in both coastal and open ocean waters, accounting for more than half of the total C flux to the phytoplankton. The re...
متن کاملInorganic carbon uptake by Southern Ocean phytoplankton
We report the results of laboratory and field studies examining inorganic carbon (Ci) utilization by Southern Ocean phytoplankton. Both in monospecific laboratory cultures of diatoms and Phaeocystis antarctica and in natural assemblages in the Ross Sea, Ci uptake by phytoplankton was dominated by direct HCO { 3 transport. The contribution of HCO 3 transport to total Ci uptake ranged from 65% to...
متن کاملBioavailability of organically bound Fe to model phytoplankton of the Southern Ocean
Iron (Fe) is known to be mostly bound to organic ligands and to limit primary productivity in the Southern Ocean. It is thus important to investigate the bioavailability of organically bound Fe. In this study, we used four phytoplankton species of the Southern Ocean (Phaeocystis sp., Chaetoceros sp., Fragilariopsis kerguelensis and Thalassiosira antarctica Comber) to measure the influence of va...
متن کاملSensitivity of sea-to-air CO2 flux to ecosystem parameters from an adjoint model
An adjoint model is applied to examine the biophysical factors that control surface pCO2 in different ocean regions. In the tropical Atlantic and Indian Oceans, the annual cycle of pCO2 in the model is highly dominated by temperature variability, whereas both the temperature and dissolved inorganic carbon (DIC) are important in the tropical Pacific. In the high-latitude North Atlantic and South...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004